

Phase Space Manipulation in High-Brightness Electron Beams

Lawrence Berkeley National Laboratory Seminar NGLS talk

June- 27-2011

U.S. Department of Energy

Argonne

UChicago ▶

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Outline

- Introduction/Motivation.
- The Argonne Wakefield Accelerator.
- "Multi-beam" control of electron beam.
- Phase space exchange between two degrees of freedom.
- Development of a single-shot longitudinal phase space diagnostics.
- Production of a train of picosecond relativistic electron bunches.
- Future plans.

Introduction

 Particle accelerators produce and accelerate charged-particles beams up to relativistic energies.

- Accelerators applications include
 - Material sciences (electron microscopy and X-ray in accelerator-based light sources),
 - Medical application,
 - Nuclear and high-energy physics.

Beam & Phase Space: definitions

A particle is identify by its coordinate and momentum in a 6D phase.

$$P_i = \left\{ x_i, p_{xi}; y_i; p_{yi}; z_i, p_{zi} \right\}$$

- lacksquare A beam is a collection of particle confined in space $p_z >> p_x, p_y$
- Separate to 2D sub-phase space

Transverse space
$$\{x_i, p_{xi}\}\ \{y_i, p_{yi}\}$$
 Longitudinal space $\{z_i, p_{zi}\}$

Trace space coordinates:

$$\overrightarrow{X}_i \equiv (x_i, x_i'; y_i, y_i', z_i, \delta_i)$$
 with $(x', y') \equiv \frac{p_{(x,y)}}{p_z}$ and $\delta \equiv \frac{p_z - p_{z,REF}}{p_z}$

Trace space coordinates of a particle downstream of an element can be obtained via

$$\overrightarrow{X}_f = R\overrightarrow{X}_i$$

R: transfer matrix of the element

Statistical representation of a beam

A beam can be represented by its second-order moments arranged as a covariance matrix or "beam matrix"

$$X = \begin{pmatrix} x \\ x' \\ y \\ y' \\ z \\ \delta \end{pmatrix} \qquad \Sigma = \langle X\widetilde{X} \rangle = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle & \langle xz \rangle & \langle x\delta \rangle \\ \langle x'x \rangle & \langle x'^2 \rangle & \langle x'y \rangle & \langle x'y \rangle & \langle x'z \rangle & \langle x\delta \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yx' \rangle & \langle yy' \rangle & \langle yz \rangle & \langle y\delta \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'^2 \rangle & \langle y'z \rangle & \langle y'\delta \rangle \\ \langle zx \rangle & \langle zx' \rangle & \langle zy \rangle & \langle zy' \rangle & \langle z^2 \rangle & \langle z\delta \rangle \\ \langle z'x \rangle & \langle z'x' \rangle & \langle z'y \rangle & \langle z'y' \rangle & \langle z'z \rangle & \langle \delta^2 \rangle \end{pmatrix}$$

- Uncoupled 2D phase spaces \Rightarrow beam matrix is block diagonal. $\sum = \begin{bmatrix} 1 & B & C \end{bmatrix}$
- The beam matrix can be propagated using the transfer matrix formalism

$$\sum_{f} = R \sum_{i} R^{T}$$

Emittance and Brightness: figure of merit of a beam

Canonical emittance:

$$\varepsilon_{x} = \frac{1}{m_{e}c} \sqrt{\langle x^{2} \rangle \langle p_{x}^{2} \rangle - \langle x p_{x} \rangle^{2}}$$

Trace-space emittance (experimentally measurable)

$$\tilde{\varepsilon}_{x} = \sqrt{\langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2}}$$

Normalized Brightness

$$B = \frac{Q}{\Gamma} = \frac{Q}{\varepsilon_x \varepsilon_y \varepsilon_z}$$
 Beam charge

Beam's moment used to parametrize the beam

$$\beta x'^2 + \gamma x^2 + 2\alpha x x' = \varepsilon_x$$

Courant-Snyder parameters

$$\beta = \frac{\left\langle x^{2} \right\rangle}{\widetilde{\varepsilon}_{x}}, \alpha = -\frac{\left\langle xx' \right\rangle}{\widetilde{\varepsilon}_{x}}, \gamma = \frac{\left\langle x'^{2} \right\rangle}{\widetilde{\varepsilon}_{x}}$$

Goals of research work

- Explore phase space manipulations.
- Multi-beam control of the transverse beam parameters.
- Investigate phase space exchange between two degrees of freedom.
- Develop a single shot longitudinal phase space diagnostics and produce a train of picoseconds electron bunches.

Importance of phase space manipulation: next generation e+/e- linear collider

International Linear Collider requirement $\rightarrow (\epsilon_x, \epsilon_y, \epsilon_z) = (8, 0.02, 3000) \, \mu \text{m}$

$$L = \frac{f_R N_+ N_-}{4\pi\varepsilon\sqrt{\beta_x \beta_y}}$$

 f_R is the repetition frequency. $\beta_{\rm x}$ and $\beta_{\rm y}$ are the twiss parameters . Assume ε = $\varepsilon_{\rm x}$ = $\varepsilon_{\rm z}$

- Redistributing the beam emittances within the 3 degrees of freedom
 - ⇒ suppression of the damping ring (a 3 km circumference ring!)

Importance of phase space manipulation: reducing the size of accelerator-based light sources

Compact (5 GeV) short-wavelength (λ =1 Å), x-ray free-electron lasers require

$$\varepsilon_{x,y} \le \frac{1}{4\pi} \gamma \lambda$$
or $(\varepsilon_x, \varepsilon_y, \varepsilon_z) = (0.1, 0.1, 10) \mu m$

An RF gun at Q=1 nC gives $(ε_x, ε_y, ε_z) = (1,1,0.1)$ μm

$$\rightarrow \Gamma = 0.1 \mu m^3$$

Only x-ray FEL (LCLS at SLAC) so far operates at 25 GeV

Source of high-quality electron beams: the photoinjectors

Principle of operation:

- 1+1/2 cell cavity resonating on TM_{010} ,π mode
- Laser illuminate photocathode on back plate
- Laser synchronized with e.m. field

Capabilities

- e- beam is naturally bunch,
- e- bunch shape controlled by laser parameters,
- emittances, charge, size are variable

Beam dynamics simulations using Particle-in-Cell codes

Beam is represented by ensemble of macroparticles.

$$\frac{dP}{dt} = F_{ext} + F_{sc}$$
 External field

- To compute space charge force (F_{sc}) we use the quasi-static approach.
 - 1- Lorentz transformation to rest frame
 - 2- Deposit the charge on 2D or 3D grid
 - 3- Solve Poisson equation ⇒ electric field.
 - 4- Inverse Lorentz transformation to Laboratory frame ⇒ B and E fields.
 - 5- Interpolate E and B field for each of the macro particle position
- ASTRA for 2D cylindrically symmetrical beam low number of macroparticles (between 2000 and 5000).
- IMPACT-T: a fully 3D tracking code, can be run on cluster computers allowing a large number of macroparticles (~ 200,000).

An example of high-brightness photoinjector The Argonne Wakefield Accelerator (AWA)

- Support advanced accelerator science experiments
- Availability to external user (e.g. NIU)
- Chosen for its versatility
- Overview
 - 5-8 MeV rf gun
 - Linac with 8 MV accelerating voltage
 - Extensive diagnostics

Simulation of AWA nominal setup

Astra (blue) VS Impact-T (red)

Q=1nC

Generic beam diagnostics at AWA

- Integrating Current Monitor: Measure beam charge
- Virtual Cathode: Get laser distribution on the photocathode

Generic beam diagnostics at AWA (cont)

- Quadruple Scan Measure emittance
 - Vary quadrupole
 - Measure spot size downstream

$$\sigma_f^2 = \widetilde{\varepsilon} \left[R_{11}^2(k) \beta_x - 2R_{11}(k) R_{12}(k) \alpha_x + R_{12}^2(k) \gamma_x \right]$$

 Simulated measurements retrieved 22.75/26.37 vs 23.18/25.55 μm

R

Ce:YAG

15

"Multi-beam" control of electron beam

- Experiment reveals some interesting physics.
- Interaction of multiple beams can be used to shape/control the parameters of a "main" beam
- Multibeams also provide intricate distribution for precisely benchmarking multi-particle simulation algorithms.
- Potential Applications
 - Beam focusing.
 - Multi-beam-based manipulation of a beam
 - Mimicking and optimizing field-array emitter patterns.
- Recent example:
 - Halo removal at Tevatron,
 - Electron lens at Tevatron.

How to generate a multi-beam electron bunch in a photoinjector?

Comparison simulation/experiments

Insights from simulations

- Lorentz force integrated over the longitudinal bunch distribution along beamline.
- Most of beam-beam interaction occurs within 5 cm from the cathode surface.

Emittance Exchange Concept

Initial state
$$\sigma_{f} = M_{EX}\sigma_{0}M_{EX}^{T}$$

$$\sigma_{0} = \begin{pmatrix} \varepsilon_{x0}T_{x0} & 0 \\ 0 & \varepsilon_{z0}T_{z0} \end{pmatrix}$$

$$T_{u0} = \begin{pmatrix} \beta_{u0} & -\alpha_{u0} \\ -\alpha_{u0} & \gamma_{u0} \end{pmatrix}$$

$$EEX$$

$$\sigma_{f} = M_{EX}\sigma_{0}M_{EX}^{T}$$
Final State
$$\sigma_{f} = \begin{pmatrix} \varepsilon_{z0}T_{z0}BB^{T} & 0 \\ 0 & \varepsilon_{x0}T_{x0}CC^{T} \end{pmatrix}$$

$$\varepsilon_{x}^{2} = \det(\sigma_{xx}) = \langle x^{2} \rangle \langle x^{2} \rangle - \langle x^{2} x \rangle^{2}$$

$$\varepsilon_{z}^{2} = \det(\sigma_{z\delta}) = \langle z^{2} \rangle \langle \delta^{2} \rangle - \langle z\delta \rangle^{2}$$

- Coordinates swap between transverse and longitudinal spaces.
- From now on, we use 4D notations

Deflector Cavity Design and modeling

Key element in phase space exchange

Field in a pillbox cylindrical cavity at zero-crossing

$$E_{z} = E_{0}kxe^{-i\omega t} \approx E_{0}kx$$

$$cB_{y} = iE_{0}e^{-i\omega t} \approx E_{0}kz$$

$$\delta = \kappa x \quad \Delta x' = \kappa z$$

Cavity normalized strength

$$\kappa = \frac{2\pi e V_0}{\lambda E}$$

Phase space exchange theory

Total transport matrix of the exchanger is

$$\begin{bmatrix} 1 + \eta \kappa & 2L(1 + \eta \kappa) & L\kappa & 2\eta + LR_{56}\kappa + \eta^2 \kappa \\ 0 & 1 + \eta \kappa & \kappa & R_{56}\kappa \\ R_{56}\kappa & 2\eta + LR_{56}\kappa + \eta^2 \kappa & 1 + \eta \kappa & 2R_{56}(1 + \eta \kappa) \\ \kappa & L\kappa & 0 & 1 + \eta \kappa \end{bmatrix} \xrightarrow{K} \begin{bmatrix} 0 & 0 & \frac{-L}{\eta} & \eta - \frac{L}{\eta}R_{56} \\ 0 & 0 & \frac{-1}{\eta} & \frac{-R_{56}}{\eta} \\ \frac{-R_{56}}{\eta} & \eta - \frac{L}{\eta}R_{56} & 0 & 0 \\ \frac{-1}{\eta} & \frac{-L}{\eta} & 0 & 0 \end{bmatrix},$$

$$K = -\frac{1}{\eta} \begin{bmatrix} 0 & 0 & \frac{-L}{\eta} & \eta - \frac{L}{\eta} R_{56} \\ 0 & 0 & \frac{-1}{\eta} & \frac{-R_{56}}{\eta} \\ \frac{-R_{56}}{\eta} & \eta - \frac{L}{\eta} R_{56} & 0 & 0 \\ \frac{-1}{\eta} & \frac{-L}{\eta} & 0 & 0 \end{bmatrix}$$

Limitations for exact emittance exchange

Exchanger

matrix:
$$M = \begin{bmatrix} 0 & \frac{23\lambda}{128} & -\frac{128L + 64L_c - 23\lambda}{128\eta} & \eta - \frac{R_{56}(128L + 64L_c - 23\lambda)}{128\eta} \\ 0 & 0 & \frac{-1}{\eta} & -\frac{R_{56}}{\eta} \\ -\frac{R_{56}}{\eta} & \eta + \frac{R_{56}}{\eta} \left(\frac{23\lambda}{128} - L - \frac{L_c}{2} \right) & \frac{23R_{56}\lambda}{128\eta^2} & \frac{23R_{56}^2\lambda}{128\eta^2} \\ -\frac{1}{\eta} & -\frac{128L + 64L_c - 23\lambda}{128\eta} & \frac{23\lambda}{128\eta^2} & \frac{23R_{56}\lambda}{128\eta^2} \end{bmatrix}$$
 Emittance not perfectly

exchanged

$$\varepsilon_x^2 = \varepsilon_{z0}^2 + \Lambda^2 \varepsilon_{x0} \varepsilon_{z0}$$

$$\varepsilon_z^2 = \varepsilon_{x0}^2 + \Lambda^2 \varepsilon_{x0} \varepsilon_{z0}$$

$$\varepsilon_{x}^{2} = \varepsilon_{z0}^{2} + \Lambda^{2} \varepsilon_{x0} \varepsilon_{z0}$$

$$\varepsilon_{z}^{2} = \varepsilon_{x0}^{2} + \Lambda^{2} \varepsilon_{x0} \varepsilon_{z0}$$

$$\Lambda^{2} = \frac{529 \lambda_{c}^{2} (1 + \alpha_{x}^{2})}{16384 \eta^{2} \beta_{x} \beta_{z}} (R_{56}^{2} (1 + \alpha_{z}^{2}) - 2R_{56} \alpha_{z} \beta_{z} + \beta_{z}^{2})$$

$$16384 \eta^{2} \beta_{x} \beta_{z}$$
Where Theorem case points in the contract with

Coupling Terms, can minimized with respect to chirp:

$$\Lambda^{2} = \frac{529\lambda_{c}^{2}R_{56}^{2}\left(1 + \alpha_{x}^{2}\right)}{16384\eta^{2}\beta_{x}\beta_{z}} \quad \text{for} \quad \alpha_{z} = -\frac{\langle z\delta \rangle}{\varepsilon_{z}} \quad \underbrace{\Xi}_{x} \quad 10$$
Dispersion

Deflecting Cavity wavelength

We need a quadrupole magnets upstream of the exchanger

Limitations for exact emittance exchange

Real particle distribution with incoming emittance $(e_x, e_z) = (15.9, 3.75)$ mm

Space charge does not prevent the minimization of emittance dilution

Investigation of emittance exchange via start-to-end simulation of AWA

Cathode to exchanger entrance modeled with ASTRA output passed to IMPACT-T for simulation of exchanger beamline

Optimized C-S parameters (space charge on)

$$\alpha_x = 10.2; \beta_x = 13.54 \,\mathrm{m}$$

Summary of emittance dilutions

Space Charge OFF	$\epsilon_{xi}(\mu m)$ 22.30	$\epsilon_{zi}(\mu m)$ 2.90	$\epsilon_{xf}(\mu m)$ 4.4	$\epsilon_{zf}(\mu m)$ 22.67	$\Delta_x(\%)$ 51%	$\Delta_z(\%)$ 16%
ON	21.58	2.54	4.7	20.90	85%	-4%

Measured initial emittance partition

Symbol (unit)	Astra	Experiment
Q (pC)	100	100 ± 10
laser σ_t (ps)	1.95	1.85 ± 0.2
rms laser size (mm)	4.0	4.0
gun field (MV/m)	43.92	47 ± 2
gun phase (deg.)	65	60 ± 5
booster field (MV/m)	15.75	15.5 ± 1
booster phase (deg.)	50.35	52 ± 4
L1 peak B-field (T)	0.062	0.0618 ± 0.0031
L2 peak B-field (T)	-0.062	-0.0626 ± 0.003
L3 peak B-field (T)	-0.228	-0.228 ± 0.0114
$\varepsilon_x (\mu \text{m})$	19.5	18.5 ± 2
$\varepsilon_y \; (\mu \text{m})$	19.5	16.2 ± 2
$\varepsilon_z \; (\mu \text{m})$	7.40	-

Longitudinal emittance is inferred from the energy spread measurement~8mm

Transverse emittance measured using Quadrupole scan technique

Phase space exchange: experimental plans

- AWA can achieved an interesting emittance partition εz<εx</p>
- Next step was to design and construct a phase space exchange beamline
 - Not possible due to space and time constraints.
 - Construct simpler beamline to commission the hardware especially the deflecting cavity
 - Configure the beamline for other purpose: a single-shot longitudinal phase space diagnostics

Single-shot longitudinal phase space measurement

■ Map initial (z, d) longitudinal phase space to the transverse plane (x, y)

Theoretical background

Typically $\Delta E/E = a$ few mrad $\Longrightarrow \Delta x = a$ few mm's

$$\Delta z \approx R_{56} \Delta E/E$$
 $\Delta z = (z_2' - z_1') - (z_2 - z_1)$

To preserve the relative $\Longrightarrow \Delta z = 0 \Longrightarrow R_{56} = 0 \Longrightarrow$ distance between particles

Head Δy $\{$ $Z_{ref} - \Delta z$ $Z_{ref} + \Delta z$ $\{$ $Z_{ref} + \Delta z$

$$B_x = \frac{E_0}{\omega a} \sin \omega t \implies F_y \neq 0 \implies \Delta y = \kappa \cdot \Delta z$$

QE1 inserted between dipoles

Goal to map longitudinal phase space to screen

$$x = \eta \delta_0 + h_x$$

$$y = \kappa z_0 + h_y + R_{56} \delta_0 \kappa$$

$$\varepsilon_z^2 = \left(\frac{\beta \gamma}{\eta \kappa}\right)^2 \left(\langle x^2 \rangle \langle y^2 \rangle - \langle xy \rangle^2 + H_{xy}\right)$$

Higher order terms

Determine the resolution

$$\beta = \left(1 - \frac{1}{\gamma^2}\right)^{1/2}$$

$$H_{xy} = h_x^2 \langle x^2 \rangle + h_y^2 \langle y^2 \rangle - 2h_x h_y \langle xy \rangle$$

Commissioning of the deflecting cavity

 Developed beam-based calibration procedure to determine cavity deflecting strength

Vertical displacement on screen versus phase of TDC

$$\delta y = 13.75\sin(\varphi - 153.1) + 0.47$$

Calibration procedure for TDC strength

$$\delta z = \Delta \phi(\frac{230}{360})$$

Commissioning of the deflecting cavity (cont)

Measured deflecting k as a function of input power is in good agreement with numerical simulations.

The cavity was operated up to 800 kW but conditioned to its nominal 2.3 MW power

without problem.

Dispersion measurements

Beam Based measurement of dispersion is used in order to indirectly tune the R56

Dispersion measurement at YE6 for different QE1 strength

Dispersion versus QE1 strength

Single shot measurement of the LPS

Using calibration procedure, we can convert the configuration space coordinates into longitudinal coordinate and fractional momentum spread.

Generation of train of bunches

Generate bunch with tunable spacing. 4 pulses generated using a-BBO crystal .

Generation of train of bunches measurement

Evolution of the longitudinal phase space associated to a train of four bunches as a function of the quadrupole QE1.

Generation of train of bunches: applications

- Resonant excitation wakefield in dielectric-loaded waveguides
- Production of narrow-band radiation in the Terahertz (THz) regime

Summary of achievement and future plans

- Advanced beam controls in a photoinjector:
 - Developed and tested a technique to use a multi-beam arrangement to control the beam properties via "multi-beam" interaction.

Emittance Exchange:

- Designed a emittance exchanger beamline and explore limiting effects,
- Installed and commissioned key components of the exchanger
- Verified initial emittance partitions of AWA
- Longitudinal phase space diagnostics:
 - Designed, build a single-shot longitudinal phase space diagnostics
 - Use the beamline to produce a train of ps electron bunches

Future Plans:

- Developed longitudinal phase space diagnostics to
 - Explore velocity bunching in photoinjector
 - Beam dynamic in beam-driven wakefield accelerators
- Designed exchanger beamline will be installed at AWA
 - Current shaping for enhancing performance of beam-drive wakefield acceleration

Thank you

List of publications published or submitted

- P. Piot, Y. E. Sun, J. G. Power and M. Rihaoui, "Generation of Relativistic Electron Bunches with Arbitrary Current Distribution via Transverse-to-Longitudinal Phase Space Exchange". Phys. Rev. ST Accel. Beams 14, 022801 (2009) (2011)
- M. Rihaoui, P. Piot, J.G. Power, W. Gai, "Verification of the AWA photoinjector beam parameters required for a transverse-to-longitudinal emittance exchange experiment". In the Proceeding of Particle Accelerator Conference (PAC'09), Vancouver, Canada (May 2009)
- M. Rihaoui, P. Piot, J.G. Power, W. Gai, "Limiting Effects in the Transverse-to-Longitudinal Emittance Exchange for Low Energy Relativistic Electron Beams". Proceeding of Particle Accelerator Conference (PAC'09), Vancouver, Canada (May 2009)
- M. Rihaoui, W. Gai, P.Piot, J.G. Power, Z.Yusof, "Measurement and Simulation of Space Charge Effects in a Multi-Beam Electron Bunch from an RF Photoinjector". Proceeding of Particle Accelerator Conference (PAC'09), Vancouver, Canada (May 2009)

List of publications published or submitted

- P. Piot, V. Demir, T. Maxwell, M. Rihaoui, J.G. Power, C. Jing, Longitudinal Beam "Diagnostics for the ILC Injectors and Bunch Compressors". Proceeding of Particle Accelerator Conference (PAC'09), Vancouver, Canada (May 2009)
- M. Rihaoui, P. Piot, J. G. Power, Z. Yusof and W. Gai, "Observation And Simulation Of Space- Charge Effects In A Radio-Frequency Photoinjector Using A Transverse Multi-Beamlet Distribution". Phys. Rev. ST Accel. Beams 12, 124201 (2009)
- M. Rihaoui, W. Gai, K. J. Kim, P. Piot, J. G. Power and Y. E. Sun, "Beam Dynamics Simulations Of The Transverse-To-Longitudinal Emittance Exchange Proof-Of-Principle Experiment At The Argonne Wakefield Accelerator". AIP Conf. Proc. 1086, 279 (2009)
- P. Piot, Y. E. Sun and M. Rihaoui, "Production of relativistic electron bunch with tunable current distribution". AIP Conf. Proc. 1086, 677 (2009)
- M. Rihaoui, W. Gai, P. Piot, J. G. Power and Z. Yusof, "Observation Of Transverse Space Charge Effects In A Multi-Beamlet Electron Bunch Produced In A Photo-Emission Electron Source". AIP Conf. Proc. 1086, 671 (2009)

List of publications published or submitted

- M. Rihaoui, C. L. Bohn, P. Piot and J. G. Power, "Impact of transverse irregularities at the photo- cathode on the production of high-charge electron bunches". In the Proceedings of Particle Accelerator Conference (PAC 07), Albuquerque, New Mexico, 25-29 Jun 2007, pp 4027
- Y.-E Sun, J. G. Power, K.-J. Kim, P. Piot, M. M. Rihaoui, "Design study of a transverse-to- longitudinal emittance exchange proof-of-principle". Proceedings of the 22nd Particle Accelerator Conference (PAC'07), Albuquerque, New Mexico (25-29 June, 2007)
- G. Power, M. E. Conde, W. Gai, F. Gao, R. Konecny, W. Liu, Z. Yusof, P. Piot, M. Rihaoui, "Pepper-pot based emittance measurement of the AWA photoinjector". Proceedings of the 22nd Particle Accelerator Conference (PAC'07), Albuquerque, New Mexico (2007)

Backup slides

Magnets modeling

Magnetic Quadrapoles:

Perform measurements of B field for the AWA quads

Magnetic dipole:

Quad Bz field measurements

- Magnetic field profile and magnets are from RadiaBe
- Ideal magnetic dipole have hard edge model. We mo dipoles with fringe fields using Enge Coefficients

$$\frac{B_{y}}{B_{y0}} = \frac{1}{1 + \exp(c_{i}s^{i-1})}, i = 1, \dots, 8$$

$$s = -\frac{z - z0}{1 + \exp(c_{i}s^{i-1})}$$

Enge Coefficients fit

Argonne Wakefield Accelerator

Transfer matrix of a realistic system

- •Use a realistic model to test for the exchanger validation.
- •Generate Initial particle distribution of 6 particles with offset in position and momentum with a reference particle X = 0.
- to get the six phase space R transfer matrix

$$X = \overrightarrow{0}$$
 Reference particle $X_i = \alpha_i \stackrel{\wedge}{e_i}$ Probe particles $X \stackrel{R}{\longrightarrow} Y = RX$ Ref $X_i \stackrel{R}{\longrightarrow} Y_i = RX_i$ Probe $\delta_i Y_i \equiv Y_i - Y = R[X_i - X]$ Differece orbit

$$\delta_{i}Y_{i} = RX_{i} = \alpha_{i}R \stackrel{\wedge}{e_{i}} = \alpha_{i}\stackrel{\wedge}{e_{i}} = \stackrel{\wedge}{\alpha_{i}}\stackrel{\wedge}{e_{i}} = >$$

$$\begin{bmatrix} R_{1i} \\ \vdots \\ R_{6i} \end{bmatrix} = >$$

$$\begin{bmatrix} R_{1i} \\ \vdots \\ \vdots \\ R_{0} \end{bmatrix}$$

RF deflecting Cavity

*Note on rf deflecting cavity can be found at: http://www.nicadd.niu.edu/aard/emittance_exchange/

Transfer matrix of a realistic emittance-exchanger beamline

Matrix inferred from particle tracking

$$M_{DL-CAV-DL} = \begin{bmatrix} -0.0010 & 0.0858 & 8.4 & -0.266 \\ -0.0015 & 0.015 & 3.896 & 0.2355 \\ 0.2387 & 0.2471 & 0.0233 & 0.0022 \\ 3.896 & 8.409 & 0.745 & 0.0436 \end{bmatrix}$$

Matrix analytically derived and evaluated for $\kappa = \frac{-1}{\eta}$

$$M = \begin{bmatrix} 0 & \frac{23\lambda}{128} & -\frac{128L + 64L_c - 23\lambda}{128\eta} & \eta - \frac{R_{56}\left(128L + 64L_c - 23\lambda\right)}{128\eta} \\ 0 & 0 & \frac{-1}{\eta} & -\frac{R_{56}}{\eta} \\ \frac{-R_{56}}{\eta} & \eta + \frac{R_{56}}{\eta}\left(\frac{23\lambda}{128} - L - \frac{L_c}{2}\right) & \frac{23R_{56}\lambda}{128\eta^2} & \frac{23R_{56}\lambda}{128\eta^2} \\ \frac{-1}{\eta} & -\frac{128L + 64L_c - 23\lambda}{128\eta} & \frac{23\lambda}{128\eta^2} & \frac{23R_{56}\lambda}{128\eta^2} \end{bmatrix} = \begin{bmatrix} 0 & 0.041 & 8.3 & 0.2456 \\ 0 & 0 & 3.909 & 0.236 \\ 0.236 & 0.2456 & 3.909 & 8.3 \\ 0.631 & 0.038 \end{bmatrix}$$

Realistic model reproduce the matrix analytically derived using hard-edge elements

Simulations Tools cont...

POISSON used to generate B field

Photo cathode(B = 0)

SUPERFISH used to generate E field

